aeruginosa suicide

vector, AmpR [26] pUCGmlox AmpR, GmR,

aeruginosa suicide

vector, AmpR [26] pUCGmlox AmpR, GmR, pUC18-based vector containing the lox see more flanked aacC1 [26] pCM157 cre expression vector, TcR [33] pGAB10 Deleted rhlG cloned in pEX100Tlink, AmpR This study pFAB1 Deleted PA3388 cloned in pEX100Tlink, AmpR This study pJBB1 Deleted rhlG-PA3388 operon cloned in pEX100Tlink, AmpR This study pGAB10.14 lox flanked aacC1 from pUCGmlox cloned in pGAB10, AmpR GmR This study PFAB1.13 lox flanked aacC1 from pUCGmlox cloned in pFAB1, AmpR GmR This study pJBB11 lox flanked aacC1 from pUCGmlox cloned in pJBB, AmpR GmR This study pGAB Complementation, rhlG cloned in pBBR1MCS-5, GmR This study Rhamnolipid and PQS analyses PQS and selleckchem the p38 MAPK apoptosis major rhamnolipid species (di-rhamnolipid Rha–Rha–C10–C10) were identified and quantified from culture supernatants and cellular

pellet using LC-MS as previously reported [17, 18]. Biofilm formation Biofilms were grown for 24 h in flow cell chambers under dynamic conditions (2.5 ml.h−1 of LB medium) at 37°C as previously described [21], stained with 5 μM SYTO 9 green (Molecular Probes, Invitrogen), observed and quantified by Confocal Laser Scanning Microscopy (CLSM) with a TCS-SP2 microscope (Leica Microsystems, Heidelberg, Germany) using a 63x oil immersion objective. Bioluminescence assays Induction of bioluminescence in bacteria carrying luxCDABE reporter plasmids was detected in optiplateTM 96 wells using the Lumicount apparatus (PerkinElmer, Boston,

Ma.), with a gain set at 1 or 6 and with photomultiplier tubes (PMT) set at 1100. 100 μl of bacterial suspensions were adjusted to the lowest optical density of the different samples, and bioluminescence values of a negative control strain (containing pAB133) were subtracted from values resulting from pAB134-containing strain(s) [34]. Bioluminescence was expressed in RLU/0.5 s. mRNA quantification by quantitative reverse transcription-PCR (qRT-PCR) RNAs SB-3CT were extracted using RNA protect bacteria reagent, RNeasy Midi Kit, and RNase-Free DNase Set (Qiagen, Hilden, Germany). RNAs were converted to cDNAs using the High Capacity cDNA Archive Kit (Applied Biosystems, Foster City, Ca.). rhlG mRNAs were quantified by real-time PCR amplification of their cDNAs with the 7300 Real Time PCR System apparatus and SYBR Green PCR Master Mix (Applied Biosystems), using procedures previously described [21] and the primers shown in Table 2.

These findings indicate

These findings SB431542 cell line indicate selleck compound that CENP-H might play an essential role in kinetochore assembly and function throughout the cell cycle. CENP-H is also strongly correlated with human cancer. It’s expression was deregulated in colorectal cancers, and ectopic overexpression of CENP-H induces chromosome instability in diploid cell lines [6]. In addition, CENP-H was deregulated in oral squamous cell carcinomas (SCCs), nasopharyngeal carcinoma (NPC), and esophageal carcinoma [15–17]. The expression of CENP-H might be a valuable prognostic marker which could predict the early stage NPC [15]. Further more, the expression of CENP-H in oral SCCs was significantly correlated

with the cell proliferation in malignant conditions[17]. Genomic aberrations including aneuploidy in epithelial cells of the oral mucosa indicate high risks

of oral Go6983 mouse cancer and cancer-related mortality [18]. Tongue cancer is one of the most common and serious types of oral cancer with poor prognosis [19, 20]. It is of great clinical value to identify efficient proliferation markers and valuable markers that help to find tongue cancer patients at very early stage. In this study, we investigated the expression of CENP-H in tongue cancer and evaluated the role of CENP-H in proliferation of tongue cancer cells. Methods Cell cultures Primary cultured normal tongue mucosa epithelial cells (TEC) were maintained in Keratinocyte-SFM (Gibco, Invitrogen Corp, USA). Tongue cancer cell lines TSCCa and Tca8113 were cultured in RPMI 1640 medium supplemented with 10% fetal calf serum (HyClone, Logan, UT). Vectors and retroviral infection Silence endogenous CENP-H, RNAi oligonucleotides (5-GGATCCTGCCCTTAAGGAAAT-3) of was cloned into the pSuper-retro-puro vector to generate pSuper-retro-CENP-H-siRNA. Retroviral production and infection were performed as described previously[21]. Stable Tca8113 cells expressing CENP-H RNAi were selected for 10 days with 0.5 lg/ml

puromycin 48 h after infection. After 10 days selection, the Tca8113 cell lysates prepared from the pooled population of cells in sample buffer were fractionated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the detection of CENP-H protein level. Patients and tissue specimens The present study was performed on 168 cases of paraffin-embedded archived tongue cancer samples obtained from the Department of Pathology, the Second Affiliated Hospital of Sun Yat-sen University (PR China). Prior patients’ consents and approval from the Institutional Research Ethics Committee were obtained for the purpose of research. The final study population included 61 female and 107 male patients (age range, 24–82 years). The median follow-up time for overall survival was 63.14 months (range, 3–169 months) for patients who were still alive at the time of the analysis.

1% (v/v) MP pesticide, the color of the culture

changed t

1% (v/v) MP pesticide, the color of the culture

changed to yellow from colorless, indicating that the MP had been hydrolyzed to PNP. After incubation for a further 2 days, the color reverted to colorless, indicating PNP degradation. Moreover, this strain exhibited the same phenomenon on a culture plate containing 0.1% (v/v) MP pesticide: generation of a distinct hydrolysis halo, the color of which first turned yellow and then became colorless. Pseudomonas sp. 1-7 was thus able to degrade both MP and PNP. In former studies, the full-length of methyl parathion hydrolase gene ophc3 from this bacterium was cloned by constructing genomic library. The gene ophc3 was expressed in E. coli and recombinant methyl parathion hydrolase OPHC3 was purified and the enzymatic properties were studied [16]. Strain 1-7 degraded PNP utilizing both HQ and BT pathways To determine how Pseudomonas sp. 1-7 degraded PNP, the reaction intermediates were eFT508 solubility dmso analyzed by HPLC. The analyses yielded three distinct peaks with retention times of 10.5 min, 45 min, and 75 min in samples drawn at 0-3.5 h intervals. These retention times corresponded with those of the standard compounds HQ, 4-NC and PNP, respectively (Figure 2). In addition, the 220-400 nm absorption spectra of

all the detected peaks corresponded with those of the standard compounds (Additional file 1: Figure S1). The HPLC studies thus confirmed the presence of PNP, 4-NC and HQ in the selleck inhibitor culture medium. Figure 2 HPLC analyses of supernatants of Preudomonas sp. 1-7 grown on PNP. (a) HPLC chemical standards: authentic PNP, HQ and 4-NC had retention times of 75, 10.5 and 45 min, respectively; HPLC analysis of cell-free supernatants at (b) 0 h and (c) 3.5 h. The LC-MS analyses of the 3.5 h HPLC samples showed the two peaks with the retention times of 45 min and 75 min as having molecular ion at m/z of 153.9 and 138.0, respectively (Figure 3). These m/z results buy LY333531 matched the standard m/z of 4-NC and

PNP and confirmed the identities of the two peaks as 4-NC and PNP, respectively. Sodium butyrate However, because the nonpolar HQ molecule could not be detected by LC-MS, we were unable to confirm that the HPLC peak with the retention times of 10.5 min was, in fact, HQ. Figure 3 LC-MS analyses of supernatants of Pseudomonas sp. 1-7 grown on PNP. Mass of the intermediates identified in the peaks with retention times of 45 min (a) and of 75 min (b) in the sample extracted after 3.5 h. Additionally, culture supernatants collected at various time intervals showed a sharp depletion of PNP within 3.5 h, and clearly demonstrated the accumulation of HQ and 4-NC from 3.5 h onward. The maximum amount of 4-NC was detected at 3.5 h, and the maximum amount of HQ at 30 min (Additional file 1: Figure S2). These results identified both HQ and 4-NC as intermediates in the degradation of PNP by strain 1-7.

The clonies were picked, grown, and then plasmids were extracted,

The clonies were picked, grown, and then plasmids were extracted, screened and analyzed by agarose gel electrophoresis, and one named AdEasy-GFP-NDRG2 selected. The construction of

recombinant adenovirus AdEasy-GFP-NDRG2 was performed as described by Tran et al [11]. Infectious viruses were purified by plaques. All recombinant adenoviruses were amplified on human embryonic kidney cell line 293 and purified by double cesium chloride density gradient ultracentrifugation. click here Titers of the adenoviral stocks were determined by plaque assay on 293 cells. Photograph of viral plaque formation to count viral titer (plaque assay). HEK-293 cells, which grew confluently on the bottom of the 24-well plastic plate (1.5 cm diameter each), were infected with serially diluted solutions containing adenoviral virus, and then cultured over night to make viral plaque. The number of plaques indicates the number of the infectious virus (= viral titer, as plaque forming unit). AdEasy-GFP-p53

was provided by Dr. Lintao Jia. Cell Culture The human renal clear-cell carcinoma lines A-498 and the human embryonic kidney cell lines HEK-293 were obtained from the American Type Culture Collection (ATCC) and maintained as recommended. A-498 was cultured in Minimum Essential Medium (MEM) with 2 mM L-glutamine and Earle’s BSS adjusted to contain 1.5 g/l sodium bicarbonate, 0.1 mM non-essential amino acids, and 1.0 mM sodium BI 2536 price pyruvate. HEK-293 was cultured with Dulbecco’s Modified Eagles’ Medium (DMEM). All the culture fluid was supplemented with 10% fetal calf

serum (FCS) and all cells were Thalidomide cultured with 5% CO2 at 37°C in a humidified chamber. Western blot analysis Cells were washed with ice-cold PBS and lysed in a RIPA buffer [50 mM Tris (pH7.5), 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS] containing PMSF (1 mM) and protease inhibitors (2 μg/ml; Protease Inhibitor Cocktail Set III, Calbiochem) on ice for 30 minutes. The lysates were clarified by centrifugation at 13,000 × g for 30 minutes at 4°C. The total protein concentration was estimated using Protein Assay Kit (Bio-Rad, Richmond, CA). 30-80 μg protein LCZ696 price samples were loaded on a 12% SDS-PAGE and subsequently transferred to polyvinylidene difluoride membranes. After being blocked with TBST [20 mM Tris (pH7.5), 150 mM NaCl, 0.01% Tween-20] containing 5% non-fat dry milk for 1 hour at room temperature, membranes were probed with an appropriate antibody overnight at 4°C followed by a horseradish peroxidase (HRP)-linked goat anti-mouse or anti-rabbit antibodies at room temperature for 1 hour. The membranes were analyzed using super ECL detection reagent (Applygen, Beijing, China).

Kyoto University Press, Kyoto Bonner, W A (1991) The Origin a

Kyoto University Press, Kyoto. Bonner, W. A. (1991). The Origin and amplification of biomolecular chirality. Origins of Life and Evolution of Biosphere, 21:59–111. Munegumi, T. and Shimoyama, A (2003). Development of homochiral peptides in the chemical evolutionary process: separation of homochiral and heterochiral oligopeptides. Chirality,15: S108-S115. Munegumi, T., Takayama, N., Ebina, T. and Sawahata, M. (2005). Stereo-specific condensation of activated amino acids or peptides. Viva Origino, 33:151–151. Plasson, R., Kondepudi, D. K., Bersini, H., Commerras, A., and Asakura, K. (2007). Emergence of homochirality in far-from-equilibrium systems: mechanisms and role in prebiotic

chemistry. Chirality, 19: 589–600. E-mail: munegumi@oyama-ct.​ac.​jp Small Structural Change Producing Tryptophanase Activity on D-tryptophan Akihiko Shimada Sustainable Environmental buy INCB28060 Studies, Graduate School of Life and Environmental Sciences, University

of Tsukuba, Tsukuba, Japan Tryptophanase (TPase) is an enzyme with extremely tight stereospecificity, cleaving l -tryptophan into indole, having no activity on D-tryptophan under ordinary conditions. However, it becomes active toward d-tryptophan in highly concentrated ammonium phosphate solutions quite different from what was expected. The only salts inducing the reaction were diammonium LY2874455 ic50 phosphate, triammonium phosphate and ammonium this website sulfate, although other salts didn’t have the activity at all. Free tryptophan is more readily influenced by alkaline pH or strong ion strengths than other biological amino acids. If ammonium phosphates affect chemical racemization on D-tryptophan, the enzymological significance of this reaction is lost. So it is important to demonstrate that ammonium phosphates do not racemize free D-tryptophan at all. We used an HPLC column appropriate for tryptophan resolution to analyze free D-tryptophan, demonstrating that the reaction is enzymatic metabolism (Shimada, 2007). Ammonium phosphates as diammonium hydrogenphosphate or triammonium phosphate probably produce

structural change in tryptophanase, which makes it possible that activity on D-tryptophan will emerge. This result indicates enzyme stereospecificity Nintedanib (BIBF 1120) is more flexible than we think. Judging from the flexibility of tryptophanase stereospecificity, this conformational change is maybe small. Circular dichroism analyses were thus applied to tryptophanase in ammonium phosphate solution. A 200 μL of monoammonium hydrogenphosphate (MAP), diammonium hydrogenphosphate (DAP), and triammonium phosphate (TAP) of 50% saturation and phosphate buffer (PB) solutions with 0.5 μM of apoTPase and 1.1 mM of PLP was injected in a 0.1 cm path length cell in a circular dichroism (CD) spectrophotometer. Spectra were recorded at wavelengths from 200 to 350 nm at room temperature. Five scans were repeated per a spectrum, averaged, and expressed as molar ellipticity in degrees cm2 dmol -1.

It was assumed that in response to the oxidative stress

It was assumed that in response to the oxidative stress caused by the interaction of light with photosynthetic Y 27632 pigments a repression of the photosynthetic pigment production is induced by the transcriptional modulator TspO [14]. In contrast, the corresponding knowledge about BChl a-containing aerobic gammaproteobacteria belonging to the OM60/NOR5 clade is still quite sparse due to the low number of available pure cultures and their fastidious growth in defined media. Previously, it was shown that in the aerobic

gammaproteobacterium Congregibacter litoralis (C. litoralis) anoxygenic photophosphorylation depends on the carbon source and incubation conditions [15], but not on the carbon concentration, which is in contradiction to the finding of Cho et al. [16], who analysed the mixotrophic growth of the marine gammaproteobacterium click here HTCC2080 and found a positive correlation with very low nutrient concentrations. In another study a correlation of the pigment production in Chromatocurvus halotolerans (C. halotolerans) with the salinity of the used medium was found [17]. The reported https://www.selleckchem.com/mTOR.html results are however difficult to compare, because the experimental setups were not consistent. In order to broaden our knowledge on the mixotrophic growth behaviour of aerobic BChl a-containing gammaproteobacteria it would be therefore desirable to analyse various strains of this clade using the same study design. In the present work, three

taxonomically diverse strains of the gammaproteobacterial OM60/NOR5

clade were analysed applying the same methods as developed previously for C. litoralis, so Carbohydrate that the obtained results can be compared with existing data. The phylogenetic positions of these strains are as follows: Luminiphilus syltensis (L. syltensis) DSM 22749T is affiliated to the NOR5-1 lineage of the OM60/NOR5 clade and related to the strain HTCC2080, Pseudohaliea rubra (P. rubra) DSM 19751T is closely related to C. litoralis and belongs to the NOR5-3 lineage, whereas C. halotolerans DSM 23344T is associated with the NOR5-3 branch, but does not belong to it [5]. The physiological and genotypic differences between these strains have been described in an accompanying paper by Spring et al. [18]. Results and discussion The production of photosynthetic pigments is influenced by the type of carbon source and oxygen availability The amount of produced photosynthetic pigments in the type strains of L. syltensis, C. halotolerans and P. rubra was determined upon growth on different substrates in defined medium. In Figure 1A results obtained with intermediates of the citric acid cycle as carbon sources are shown. The highest production of photosynthetic pigments was achieved in all three strains with malate, whereas succinate yielded the lowest amount of pigments. This effect was most pronounced in C. halotolerans and less significant in L. syltensis. A similar correlation between carbon source and pigmentation was obtained in a previous study with C.

The observed accumulation of ZnuA is likely due to the ability of

The observed accumulation of ZnuA is likely due to the ability of ZinT to sequester the free zinc present in the culture medium, inducing a condition of zinc starvation. Although we have analyzed the effects of extracellular ZinT only on the bacterial cell, we hypothesize that the sequestration of extracellular zinc may have effects also on the host cells. In this view, it is interesting to note that several bacteria produce metal binding proteins located on the cell surface which mediates the microbial attachment

to the human extracellular matrix. Proteins of this class Transmembrane Transporters inhibitor include, for example, the laminin binding proteins (LBP) from Streptococcus agalactiae or Streptococcus pyogenes, which are structurally related to ZnuA [38, 39]. Although the details of the interaction of LBP with laminin are still to be clarified, it is likely that LBP acts as an adhesin which binds

to the zinc containing laminin in a metal-mediated manner. By analogy, we suggest that extracellular ZinT may interact with zinc-containing proteins in the intestinal epithelia, thus favouring E. coli O157:H7 colonization, or that its capability to sequester zinc ions from the environment may damage epithelial cells ability to neutralize bacterial adhesion. Conclusions This study demonstrates that the high affinity ZnuABC uptake system plays a key role in zinc uptake in E. coli O157:H7 and that ZinT is an AZD7762 purchase Additional component of this metal transport system which significantly enhances the rate of metal uptake. In addition, our data indicate that the functionality of this transporter may influence the adhesion of bacteria to epithelial cells. These findings improve Bioactive Compound Library mouse our knowledge about the importance of zinc in bacterial physiology and its role in the host-microbe interaction. Acknowledgements This work was partially supported by ISS grant to RG Electronic supplementary material Additional

file 1: Figure S1: Influence of zinc on modM9 growth curve. The figure shows the growth curves of wild type and D znu A:: kan strains in modM9 supplemented with various concentrations of ZnSO4 (0.25 mM, 0.5 mM, Glutamate dehydrogenase 1 mM and 5 mM). (PPTX 72 KB) Additional file 2: Figure S2: Growth curve of the complemented D znu A:: kan strain in modM9. The figure shows as the growth curves of D znu A:: kan containing the plasmid p18ZnuAO157 or p18ZnuAE. coli are improved respect to that of D znu A:: kan. (PPT 122 KB) Additional file 3: Figure S3: Expression pattern of zin T in SDS-PAGE. The figure shows the total extracellular extracts of zin T::3xFLAG- kan analysed by SDS-PAGE and stained by Coomassie- Blue or revealed by Western blot. (PPTX 132 KB) Additional file 4: Table S1: Competition assays in CaCo-2 cells. The table shows as during co-infection experiments the znu A mutant strain replicated more efficiently than the wild type strain. (DOC 30 KB) References 1. Waldron KJ, Rutherford JC, Ford D, Robinson NJ: Metalloproteins and metal sensing.

Table 1 Advantages and disadvantages of liposome [ [19]] Advantag

Table 1 Advantages and disadvantages of liposome [ [19]] Advantages of liposome Disadvantages of liposome Liposomes increased efficacy and therapeutic index of drug (actinomycin-D) Low solubility Liposome increased stability via encapsulation Short half-life Liposomes are non-toxic, flexible, biocompatible, completely

biodegradable, and non-immunogenic for systemic and non-systemic administrations Sometimes phospholipid undergoes oxidation and hydrolysis-like reaction Liposomes reduce the toxicity of the encapsulated agent (amphotericin B, Taxol) Leakage and fusion of encapsulated drug/molecules Liposomes help reduce JIB04 the exposure of sensitive tissues to toxic drugs Production cost is high Site avoidance effect Fewer stables Flexibility to couple with site-specific BTK inhibitor purchase ligands to achieve active targeting   It has been displayed that phospholipids impulsively form closed structures when they are DMXAA purchase hydrated in aqueous solutions. Such vesicles which have one or more phospholipid bilayer membranes can transport aqueous or lipid drugs, depending on the nature of those drugs. Because lipids are amphipathic (both hydrophobic and hydrophilic) in

aqueous media, their thermodynamic phase properties and self assembling characteristics influence entropically focused confiscation of their hydrophobic

sections into spherical bilayers. Those layers are referred to as lamellae [4]. Generally, liposomes are definite as spherical vesicles with particle sizes ranging from 30 nm to several micrometers. They consist of one or more lipid bilayers surrounding aqueous units, where PJ34 HCl the polar head groups are oriented in the pathway of the interior and exterior aqueous phases. On the other hand, self-aggregation of polar lipids is not limited to conventional bilayer structures which rely on molecular shape, temperature, and environmental and preparation conditions but may self-assemble into various types of colloidal particles [5]. Liposomes are extensively used as carriers for numerous molecules in cosmetic and pharmaceutical industries. Additionally, food and farming industries have extensively studied the use of liposome encapsulation to grow delivery systems that can entrap unstable compounds (for example, antimicrobials, antioxidants, flavors and bioactive elements) and shield their functionality. Liposomes can trap both hydrophobic and hydrophilic compounds, avoid decomposition of the entrapped combinations, and release the entrapped at designated targets [6–8].

Detailed descriptions of chemicals, extraction and work-up proced

Detailed descriptions of chemicals, extraction and work-up procedures for specimens and agar plate cultures, cultivation methods, as well as comprehensive protocols for HPLC/QTOF-ESI-HRMS were given by Röhrich et al. (2012, 2013a). For routine screening, a high-resolution micrOTOF Q-II mass spectrometer with orthogonal ESI source (Bruker Daltonic, Bremen, Germany), coupled to an UltiMate 3000 HPLC (Dionex, Idstein, Germany), was used. Samples, which have been screened

negative with the above HPLC/MS system, were re-examined using a maXis 3G QTOF mass spectrometer with orthogonal ESI source (Bruker Daltonic, Bremen, Germany), coupled to an UltiMate 3000 UHPLC (Dionex, Idstein, Germany) as previously described (Röhrich et al. 2012, 2013a). Results and discussion General see more considerations. All strains investigated in this study represent phylogenetically learn more well-defined species (Tables 2 and 3). This is in contrast to most of the reports published until the end of the 1990s, when peptaibiotic production by the genus Trichoderma/Hypocrea was − according to Rifai’s classification (1969)

− mostly attributed to one of the four common species T. viride, T. koningii, T. harzianum, T. longibrachiatum, and sometimes to T. pseudokoningii and T. aureoviride. Careful inspection of the literature published prior to the turn of the millennium revealed that only three of the Trichoderma strains, reported as sources of ‘classical’ peptaibiotics have correctly been identified and appropriately been deposited, viz. the paracelsin-producing T. reesei QM 9414 (Brückner and Graf 1983; Brückner et al. 1984), the trichosporin/trichopolyn producer T. polysporum TMI 60146

(Iida et al. 1990, 1993, 1999), and the paracelsin E-producing T. saturnisporum CBS 330.70 (Ritieni et al. 1995). Furthermore, none of the numerous much peptaibiotic-producing strains, reported to belong to those six Trichoderma species mentioned above, has subsequently been verified by phylogenetic analyses. Statements on the identity of the producers must therefore be regarded with great caution, unless it is being described how isolates were identified (Degenkolb et al. 2008). Unfortunately, most of the peptaibiotic-producing Trichoderma/Hypocrea strains investigated prior to 2000 have never been appropriately deposited either i) in a publicly accessible culture collection or ii) in an International Depositary Authority (IDA) under the conditions of the Budapest Treaty; thus, they are not XMU-MP-1 available to independent academic research. As misidentifications persist to be a continuous problem, not only in the older literature (Neuhof et al. 2007), the authors prefer to introduce new names for the peptaibiotics sequenced in this study. Those new names refer to the epithets of the producing species. Screening of Hypocrea thelephoricola.

Oncogene

2004,23(39):6677–6683 PubMedCrossRef 13 Kong W,

Oncogene

2004,23(39):6677–6683.PubMedCrossRef 13. Kong W, Mou X, Liu Q, Chen Z, Vanderburg CR, Rogers JT, Huang X: Independent component analysis of Alzheimer’s DNA microarray gene expression data. Mol Neurodegener 2009,4(1):5.PubMedCrossRef 14. Zhang XW, Yap YL, Wei D, Chen F, Danchin A: Molecular SB202190 purchase diagnosis of human cancer type by gene expression profiles and independent component analysis. Eur J Hum Genet 2005,13(12):1303–1311.PubMedCrossRef 15. Hyvarinen A, Oja E: Independent component analysis: algorithms and applications. Neural Netw 2000,13(4–5):411–430.PubMedCrossRef 16. Smyth GK: limma: Linear Models for Microarray Go6983 mw Data. Edited by: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S. Bioinformatics and Computational Biology Solutions using R and Bioconductor NY: Springer; 2005. 17. Dasgupta T, de Kievit TR, Masoud H, Altman E, Richards JC, Sadovskaya I, Speert DP, Lam JS: Characterization of lipopolysaccharide-deficient Bcl-2 inhibitor mutants of Pseudomonas aeruginosa derived from serotypes O3, O5, and O6. Infect Immun 1994,62(3):809–817.PubMed 18. Cryz SJ Jr, Pitt TL, Furer E, Germanier R: Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa. Infect Immun 1984,44(2):508–513.PubMed 19. Engels W, Endert J, Kamps MA, van Boven CP: Role of lipopolysaccharide in opsonization and phagocytosis of Pseudomonas aeruginosa. Infect Immun 1985,49(1):182–189.PubMed

20. Hancock RE, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB: Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 1983,42(1):170–177.PubMed 21. Amiel E, Lovewell RR, O’Toole GA, Hogan DA, Berwin B: Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression. Infect Immun 2010,78(7):2937–2945.PubMedCrossRef 22. Zhang Z, Louboutin JP, Weiner DJ, Goldberg JB, Wilson JM:

Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5. Infect Immun 2005,73(11):7151–7160.PubMedCrossRef 23. Mahenthiralingam E, Speert 3-oxoacyl-(acyl-carrier-protein) reductase DP: Nonopsonic phagocytosis of Pseudomonas aeruginosa by macrophages and polymorphonuclear leukocytes requires the presence of the bacterial flagellum. Infect Immun 1995,63(11):4519–4523.PubMed 24. Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A: The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA 2001,98(12):6911–6916.PubMedCrossRef 25. O’Toole GA, Kolter R: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998,30(2):295–304.PubMedCrossRef 26.