The underlying molecular background of vestibular compensation is

The underlying molecular background of vestibular compensation is not yet fully understood. Recent studies have shown that the extracellular matrix (ECM) molecules have either permissive or non-permissive effect on the neural plasticity. In our previous study we have demonstrated changes in the expression of hyaluronan (HA) in the vestibular nuclei (VN) of the frog following peripheral vestibular lesion. The present work AZD9291 was undertaken to examine the expression of the HA and chondroitin sulfate proteoglycans (CSPGs) in the lateral vestibular nucleus (LVN) of the rat following UL by using histochemical methods. On the first postoperative

day, the condensation of the ECM around the neurons, the perineuronal net (PNN) was not distinguished from the surrounding neuropil on the side of UL indicating the desorganization of its molecular structure. At survival day 3, the PNN was recognizable with the HA probe, whereas its staining for the CSPGs was restored by the time of the seventh postoperative day. In the neuropil, the intensity of the HA increased on the operated side, while the CSPGs reaction almost completely disappeared. The present study have demonstrated for the first time Ruboxistaurin mouse that the UL is accompanied by the modification of the HA, and CSPG staining pattern in the PNN of the LVN in the rat. As the reorganization of the PNN corresponds

to the restoration of spontaneous activity of vestibular neurons, our study implies the role of HA and CSPGs in the vestibular compensation. (c) 2012 Elsevier Ireland Ltd. All rights reserved.”
“Lysophosphatidic PD0332991 order acid (LPA) is a cell membrane phospholipid metabolite that can act as an extracellular signal. Its effects are mediated through at least five G protein-coupled receptors, LPA(1-5), and probably others as well. Studies in multiple

species including LPAR-deficient mice and humans have identified or implicated important roles for receptor-mediated LPA signaling in multiple aspects of vertebrate reproduction. These include ovarian function, spermatogenesis, fertilization, early embryo development, embryo implantation, embryo spacing, decidualization, pregnancy maintenance and parturition. LPA signaling can also have pathological consequences, influencing aspects of endometriosis and ovarian cancer. Here we review recent progress in LPA signaling research relevant to female and male reproduction.”
“Purpose: We investigated Chlamydia trachomatis infection and its pathogenic consequences in the male rodent genital tract.

Materials and Methods: Male rats were inoculated in the meatal urethra with Chlamydia muridarum. We sought bacterial DNA at early and late times after inoculation in different parts of the male genital tract. Histological alterations and the immune response against prostate antigens were analyzed.

Comments are closed.