Prog Photovolt Res Appl 2008, 16:61–67.CrossRef 2. O’Regan B, Gratzel M: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal
TiO 2 films. Nature 1991, 353:737–740.CrossRef 3. Lin L-Y, Yeh M-H, Lee C-P, Chou C-Y, Vittal R, buy Y-27632 Ho K-C: Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. Electrochim Acta 2012, 62:341–347.CrossRef 4. Hwang D-K, Lee B, Kim D-H: Efficiency enhancement in solid dye-sensitized solar cell by three-dimensional photonic crystal. RSC Advances 2013, 3:3017–3023.CrossRef 5. Kruse N, Chenakin S: XPS characterization of Au/TiO 2 catalysts: binding energy assessment and irradiation effects. Appl Catal A Gen 2011, 391:367–376.CrossRef 6. Konstantinidis S, Dauchot JP, Hecq M: Titanium oxide thin films deposited by high-power impulse magnetron selleckchem sputtering. Thin Solid Films 2006, 515:1182–1186.CrossRef 7. Robertson N: Optimizing dyes for dye-sensitized solar cells. Angew Chem Int Ed 2006, 45:2338–2345.CrossRef 8. Yang S, Kou H, Wang J, Xue H, Han H: Tunability of the band energetics of nanostructured SrTiO 3 electrodes for dye-sensitized solar cells. J Phys Chem C 2010, 114:4245–4249.CrossRef 9. Gratzel M: The advent of mesoscopic injection solar cells. Prog Photovolt Res Appl 2006, 14:429–442.CrossRef 10. Gledhill SE, Scott B, Gregg BA: Organic and nano-structured
composite photovoltaics: an overview. J Mater Res 2005, 20:3167–3179.CrossRef 11. Gorlov M, Kloo L: Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans 2008, 37:2655–2666.CrossRef 12. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B: Ionic-liquid materials for the electrochemical challenges of the future. Nat
Mater 2009, 8:621–629.CrossRef 13. Chiu RC, Garino TJ, Cima MJ: Drying of granular ceramic films: I, effect of processing variables on cracking behavior. J Am Ceram Acyl CoA dehydrogenase Soc 1993, 76:2257–2264.CrossRef 14. Chiu RC, Cima MJ: Drying of granular ceramic films: II, drying stress and saturation uniformity. J Am Ceram Soc 1993, 76:2769–2777.CrossRef 15. Sarkar P, De HRD: Synthesis and microstructural manipulation of ceramics by electrophoretic deposition. J Mater Sci 2004, 39:819–823.CrossRef 16. Scherer GW: Theory of drying. J Am Cerum Soc 1990, 73:3–14.CrossRef 17. Lee K-M, Hsu Y-C, Ikegami M, Miyasaka T, Thomas KRJ, Linb JT, Ho K-C: Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. J Power Sources 2011, 196:2416–2421.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions JKT designed the work and wrote the manuscript. WJC carried out the preparation of samples, UV–vis absorption, and I-V measurements. WDH carried out the measurement and analysis of EIS. TCW and THM helped in carrying out the FESEM and IPCE measurements. All authors read and approved the final manuscript.