Finally, Orbitrap mass spectrometry analysis of a chromatographically purified gE sample revealed four cellular proteins associated with
the unfolded protein response: BiP (HSPA5), HSPA8, HSPD1, and PPIA (peptidyl-propyl cis-trans isomerase). We conclude that IDE protease binds to the 73-kDa gE precursor and that this event occurs in the cytosol but not as a receptor/ligand interaction.”
“Amantadine and dextromethorphan suppress levodopa (L-DOPA)-induced dyskinesia in Parkinson’s disease patients and abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA) rat model. These medications have been hypothesized to exert their therapeutic effects by a noncompetitive N-methyl-o-aspartate (NMDA) antagonist mechanism, but they also have known serotonin (5-HT) indirect agonist effects that could suppress AIMs. This raised the possibility that NMDA antagonists lacking 5-HTergic effects would not have the anti-dyskinetic Selleck LXH254 action predicted by previous investigators.
To test this hypothesis, we investigated MK-801, the most widely-studied NMDA antagonist. We found that chronic low-dose MK-801 (0.1 mg/kg) had no effect on development of AIMs or contraversive rotation. In addition, in L-DOPA-primed rats, low-dose MK-801 (0.1 mg/kg) had no effect on expression of AIMs, contraversive rotation, or sensorimotor function. Conversely, higher doses of MK-801 (0.2-0.3 mg/kg) suppressed expression BAY 63-2521 in vivo of AIMs. However, as we show for the
first time, anti-dyskinetic doses of MK-801 also suppressed L-DOPA-induced contralateral SBI-0206965 concentration rotation and impaired sensorimotor function, likely due to non-specific interference of MK-801 with L-DOPA-induced behavior. We conclude that noncompetitive NMDA antagonists are unlikely to suppress dyskinesia clinically without worsening parkinsonism. (C) 2010 Elsevier Ltd. All rights reserved.”
“Oncolytic vaccinia viruses have shown compelling results in preclinical cancer models and promising preliminary safety and antitumor activity in early clinical trials. However, to facilitate systemic application it would be useful to improve tumor targeting and antitumor efficacy further. Here we report the generation of vvdd-VEGFR-1-Ig, a targeted and armed oncolytic vaccinia virus. Tumor targeting was achieved by deletion of genes for thymidine kinase and vaccinia virus growth factor, which are necessary for replication in normal but not in cancer cells. Given the high vascularization typical of kidney cancers, we armed the virus with the soluble vascular endothelial growth factor (VEGF) receptor 1 protein for an antiangiogenic effect. Systemic application of high doses of vvdd-VEGFR-1-Ig resulted in cytokine induction in an immunocompromised mouse model. Upon histopathological analysis, splenic extramedullary hematopoiesis was seen in all virus-injected mice and was more pronounced in the vvdd-VEGFR-1-Ig group.