Aging is associated with an increased risk of developing respiratory impairment, which is best defined by spirometric Z-scores. Alternatively, in selected cases, respiratory impairment may be defined by peak expiratory flow, also expressed
as a Z-score.”
“Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense see more of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern
analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the Crenigacestat in vitro goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were SGC-CBP30 scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants’ source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to
detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli.