Previous immunity to DENV is a major risk factor for developing s

Previous immunity to DENV is a major risk factor for developing severe dengue disease in humans.23 A small reliable animal model that supports functional human innate and adaptive immune responses that will further our knowledge of protective and pathological immune responses to dengue virus is therefore clearly important. Researchers have detected measurable signs of dengue disease after infection of cord-blood-engrafted NSG mice with virulent low-passage clinical strains of DENV-2.13,16 However, robust human anti-DENV adaptive immune responses were not thoroughly assessed in those studies.

this website We have shown DENV-specific HLA-A2-restricted T-cell function and modest antibody responses in cord blood HSC-engrafted NSG mice.14 The main objective of the current study was to determine whether we can detect improved adaptive immune responses to primary DENV infection in BLT-NSG mice. Here we show HLA-A2-restricted T-cell responses to multiple non-structural proteins in BLT-NSG mice at frequencies similar to those detected

in humans. We show heightened antibody responses in BLT-NSG mice compared with cord blood HSC-engrafted mice. Furthermore, B cells maintained long-term in immunized BLT-NSG mice were able to secrete DENV-specific neutralizing antibodies. We have not assessed germinal centre formation or somatic hypermutation LY2157299 molecular weight of immunoglobulin genes in B cells from BLT-NSG mice; therefore it is unclear whether these B cells can be considered bona fide memory B cells. We and others have noted that levels of haematolymphoid engraftment in BLT-NSG mice are Montelukast Sodium increased compared with levels in cord blood HSC-engrafted NSG mice.24–26 Humanized mice have demonstrated some evidence of human adaptive immune responses to Epstein–Barr virus infection, toxic shock syndrome toxin-1 and HIV infection.17,18,27,28 Human T cells are educated on autologous human thymic tissue in the BLT-NSG mice, so we speculated that DENV-specific T cells restricted by multiple

HLA alleles expressed by the donor should develop in the mice following infection. We therefore used overlapping peptide pools that encompass the entire genome to assess the breadth, magnitude and quality of DENV-specific T-cell responses. Our results demonstrate that non-structural proteins are the predominant targets of CD8 T cells. These findings are similar to findings in humans,29–31 further validating BLT-NSG mice as an animal model that can be used to measure human T-cell responses to DENV during acute infection and in memory. We detected elevated serum IgM responses, which persist for several weeks in DENV-infected BLT-NSG mice during acute infection. Furthermore, B cells obtained from splenocytes of BLT-NSG mice immunized several weeks earlier were able to secrete DENV-specific antibodies capable of neutralizing DENV infectivity in vitro.

Comments are closed.