To create high-quality ZnO NRs, various techniques have been proposed, such as the aqueous hydrothermal growth [10], metal-organic Talazoparib chemical vapor deposition [17], vapor phase epitaxy [18], vapor phase transport [19], GDC-0449 and vapor–liquid-solid method [20]. Among these methods, the aqueous hydrothermal technique is an easy and convenient method for the cultivation of ZnO NRs. In addition, this technique had some promising advantages, like its capability for large-scale production at low temperature and the production of epitaxial, anisotropic ZnO NRs [21, 22]. By using this method and varying the chemical use, reaction temperature,
molarity, and pH of the solution, a variety of ZnO nanostructures can be formed, such as nanowires (NWs) [16, 23], nanoflakes [24], nanorods [25], nanobelts [26], and nanotubes [27]. In this study, we demonstrated a low-cost hydrothermal growth method to synthesize ZnO NRs on a Si substrate, with the use of different types of solvents. TGF beta inhibitor Moreover, the effects of the solvents on the structural and
optical properties were investigated. Studying the solvents is important because this factor remarkably affects the structural and optical properties of the ZnO NRs. To the best of our knowledge, no published literature is available that analyzed the effects of different seeded layers on the structural and optical properties of ZnO NRs. Moreover, a comparison of such NRs with the specific models of the refractive index has not been published. Methods ZnO seed solution preparation Homogenous and uniform ZnO nanoparticles were deposited using the sol–gel spin coating method [28]. Before seed layer deposition, the ZnO solution was prepared using zinc acetate dihydrate [Zn (CH3COO)2 · 2H2O] as a precursor and monoethanolamine (MEA) as a stabilizer. In this study, methanol (MeOH), ethanol (EtOH), very isopropanol (IPA), and 2-methoxyethanol (2-ME) were used as solvents.
All of the chemicals were used without further purification. ZnO sol (0.2 M) was obtained by mixing 4.4 g of zinc acetate dihydrate with 100 ml of solvent. To ensure that the zinc powder was completely dissolved in the solvent, the mixed solution was stirred on a hot plate at 60°C for 20 min. Then, 1.2216 g of MEA was gradually added to the ZnO solution, while stirring constantly at 60°C for 2 h. The milky solution was then changed into a homogenous and transparent ZnO solution. The solution was stored for 24 h to age at room temperature (RT) before deposition. ZnO seed layer preparation In this experiment, a p-type Si (100) wafer was used as the substrate. Prior to the ZnO seed layer deposition process, the substrate underwent standard cleaning processes, in which it was ultrasonically cleaned with hydrochloric acid, acetone, and isopropanol.